A New Scheme for Detecting Malicious Nodes in Vehicular Ad Hoc Networks Based on Monitoring Node Behavior
Vehicular ad hoc networks have played a key role in intelligent transportation systems that considerably improve road safety and management. This new technology allows vehicles to communicate and share road information. However, malicious users may inject false emergency alerts into vehicular ad hoc networks, preventing nodes from accessing accurate road information. In order to assure the reliability and trustworthiness of information through the networks, assessing the credibility of nodes has become a critical task in vehicular ad hoc networks. A new scheme for malicious node detection is proposed in this work. Multiple factors are fed into a fuzzy logic model for evaluating the trust for each node. Vehicles are divided into clusters in our approach, and a road side unit manages each cluster. The road side unit assesses the credibility of nodes before accessing vehicular ad hoc networks. The road side unit evicts a malicious node based on trust value. Simulations are used to validate our technique. We demonstrate that our scheme can detect and evict all malicious nodes in the vehicular ad hoc network over time, lowering the ratio of malicious nodes. Furthermore, it has a positive impact on selfish node participation. The scheme increases the success rate of delivered data to the same level as the ideal cases when no selfish node is present.