Hydrological and Hydrodynamic Modeling for Flash Flood and Embankment Dam Break Scenario: Hazard Mapping of Extreme Storm Events
: Simulation of dam breach scenarios can help in the preparation of emergency action plans
for real dam breaks or flash flooding events. The purpose of this study was to identify flood-prone
areas in the Al Wala Valley in the governorate of Madaba in Jordan through analysis of the Al Wala
Dam. Modelling of dam breaches was conducted under two scenarios: a Clear Day scenario and a
Probable Maximum Flood (PMF) scenario. The former scenario does not address the various dam
failure modes; rather, it addresses the formation and development of a breach as a result of structural
failures like the sliding of dam blocks in the case of a concrete dam or piping failures in the case of
embankment dams. The PMF scenarios, however, simulate unsteady flow in pipes and overtopping
failure via consideration of runoff hydrography. In the PMF scenario, flood-prone areas can be
identified by in-depth analysis of data from previous extreme rainfall events. The related hydrologic
and hydraulic data can then be modelled using intensity-duration-frequency curves applied to an
hour-by-hour simulation to discover the areas most at risk of flooding in the future. In the present
study, data were collected from inlet of flow to Al Wala Valley on 10 January 2013. The collected data,
which included rainfall and discharge data, were fed to the HEC-HMS software in order to calibrate
the hydrological parameters of the watershed of the Al Wala Dam. Additionally, the HEC-RAS
tool was employed to determine the breach outflow hydrography and hydraulic conditions across
various critical downstream locations, which were determined by use of dynamic flood wave-routing
models. The simulations revealed that, in the case of the Clear Day scenario, downstream inundation
would cover an area of 5.262 km2
in the event of a pipe failure. However, in the event of a six-hour
storm, a twelve-hour storm, and a twenty-four-hour storm, the flooded area would rise to 6.837 km2
,
8.518 km2
, and 9.390 km2
, respectively. In the event of an overtopping failure, 13.171 km2 would
be inundated, according to the Clear Day scenario. On the other hand, in the event of a six-hour
storm, a twelve-hour storm, and a twenty four-hour storm, the flooded area would rise to 13.302 km2
,
14.249 km2
, and 14.594 km2
, respectively.