New Insights for Understanding the Structural Deformation Style of the Strike-Slip Regime along the Wadi Shueib and Amman-Hallabat Structures in Jordan Based on Remote Sensing Data Analysis
This paper presents new findings that contribute to the understanding of the deformational style of the Wadi Shueib Structure (WSS) and the Amman-Halabat Structure (AHS) and their relationship with the regional tectonic regime of the Dead Sea Transform Fault (DSTF). Our research utilized Landsat-8 OLI imagery for the automatic extraction of lineaments, and our lineament mapping was facilitated by processing and digital image enhancement using principal component analysis (PCA). Our data revealed a relatively higher density of lineaments along the extension of the major faults of the WSS and AHS. However, a relatively lower density of lineaments was shown in areas covered by recent deposits. Two major lineament trends were observed (NNE-SSW and NW-SE) in addition to a minor one (NE-SW), and most of these lineaments are parallel to the orientation of the WSS and AHS. We offer the supposition that the DSTF has merged into the major faults of the WSS and AHS. We further suppose that these faults were reactivated as a restraining bend composed of active strike-slip fault branches that developed due to the NNW-SSE-trending Dead Sea transpressional stress field. Depending on the relationship between the direction of the WSF and AHF strands and the regional tectonic displacement along the DSTF, thrust components are present on faults with horsetail geometry, and these movements are accompanied by folding and uplifting. Thus, the major faults of the WSS and AHS represent a contractional horsetail geometry with associated folding and thrusting deformation.
Publishing Year
2020