A comparison of machine learning models for the mapping of groundwater spring potential
Groundwater resources are vitally important in arid and semi-arid areas meaning that spatial planning tools are required for their exploration and mapping. Accordingly, this research compared the predictive powers of five machine learning models for groundwater potential spatial mapping in Wadi az-Zarqa watershed in Jordan. The five models were random forest (RF), boosted regression tree (BRT), support vector machine (SVM), mixture discriminant analysis (MDA), and multivariate adaptive regression spline (MARS). These algorithms explored spatial distributions of 12 hydrological-geological-physiographical (HGP) conditioning factors (slope, altitude, profile curvature, plan curvature, slope aspect, slope length (SL), lithology, soil texture, average annual rainfall, topographic wetness index (TWI), distance to drainage network, and distance to faults) that determine where groundwater springs are located ?
Publishing Year
2020