Quantisation of particle motion in dissipative harmonic environment
In this work, the quantisation of particle propagating in a dissipative harmonic medium will be investigated using the creation and annihilation operator formalism, which is more appropriate in some fields of physics. Modelling the problem as damped harmonic oscillator, the equations of motion are then written in terms of Poisson brackets, and the Heisenberg equations are written in terms of the quantum counterpart of the Poisson bracket, known as commutators. The creation and annihilation operators are introduced and used to obtain the energy and eigenstates. Our results are in exact agreement with different quantisation approaches as in Serhan et al, J. Math. Phys. 59, 082105 (2018). The normalisable coherent states are obtained as eigenstates of the annihilation operator, which overcome the non-normalisability of these states that appeared via the dual coordinate method.