Interfacial bond capacity prediction of concrete-filled steel tubes utilizing artificial neural network
Concrete-filled steel tubes (CFSTs) have demonstrated superior performance compared to other types of composite columns. The evaluation of interactions between concrete and steel composites is crucial due to their significant impact on the overall structural behavior in various loadings. This study develops an artificial neural network (ANN) that predicts the ultimate interfacial bond strength () of circular and square CFSTs. The length of the interfacial bond between the tube and the concrete; the thickness, shape, and inner perimeter of the tube; and the cubic compression strength and age of the concrete are considered as model inputs. The modeling process uses 397 experimental datasets from 18 studies of push-out tests, more specifically, 143 square and 254 circular CFSTs. ANN with a hidden layer of error-propagation, feed-forward, and sigmoidal activation function is trained, tested, optimized, and validated to achieve ?