جامعة آل البيت دائرة ضمان الجودة والتخطيط

College of Science Department of Mathematics Course syllabus: Advanced Mathematical Methods First semester 2019/2020

1. Instructor Information:

Instructor Name	Safwan Al-Shara'	
Office Hours	Tuesday Monday, Wednesday	10:00 - 11:00 12:00 - 1:00 12:30 - 2:00
Office Number and Telephone	2201	
Email	safwan alshara973@yaho	0.COM

2. Course Description:

Integral Transforms: Definition of Laplace Transforms and its Inverse Transforms, Transforms of special functions, Theorems and applications, Fourier Transforms and its inverse, applications, Hankel Transform and applications, Mellin Transforms, some applications. Integral equations: Definition and method of solutions, some applications.

3. Course Information:

Course number: 401771	Course Title: Advanced Mathematical Methods	Level : Master degree
Course Nature: Theoretical	Prerequisite: None	Lecture time: Wed. 2:00 – 5:00
Academic year: 2019 – 2020	Semester: First	Credit Hours: 3

4. Course Objectives:

- 1. Study Integral equation with separable kernel.
- 2. Apply the method of successive approximations to solve I.E.
- 3. Study the Mellin Transform, it's properties and applications.
- 4. Study the Hankel Transform, it's properties and applications.
- 5. Study the Laplace Transform, it's properties and applications.
- 6. Study the Inverse Laplace Transform, it's properties and applications.

5. Course Content:

1

Integral equations and boundary value problems				
* Introduction *	Classical Fredholm theory			
* Integral equations with separable kernels *	Applications to ordinary differential equations			
* Method of successive approximations				
The Mellin Transform				
* The Mellin transform. Definition	* Mellin transforms of derivatives			
* Linearity property of Mellin transforms	* Mellin transform of Integrals			
* Elementary properties of the Mellin transform	* Inverse Mellin transform. Definition			
Hankel Transforms				
* The Bessel function	* Inversion formula for the Hankel transformation			
* The Hankel Transforms	* Applications of the Hankel transform to boundary			
* Linearity property	value problems			
* Hankel Transform of the derivatives of a function				
Laplace Transform				
* Integral Transform. Definition	* Second translation theorem			
* Definition of Laplace Transform	* Laplace Transforms of derivatives			
* Sufficient conditions for the existence of Laplace Transform	m * Laplace Transforms of integrals			
* Linearity property for Laplace Transform	* Initial and final theorems			
* Laplace Transform for elementary functions	* Laplace Transform of periodic functions			

* First translation theorem	* Evaluation of integrals by using Laplace			
* Unit step function	Transforms			
	* Laplace Transforms of some Special functions			
Inverse Laplace Transform				
* Definition of Inverse Laplace Transform	* First and Second translation theorem			
* Inverse Laplace Transform for elementary functions	* Inverse Laplace Transforms of derivatives			
* Linearity property of Inverse Laplace Transform	* Inverse Laplace Transforms of integrals			
* Use of Partial fractions	* The Convolution Theorem			
Applications of Laplace Transforms				
* Solution of ordinary differential equations with constant	* Solution of simultaneous ordinary differential			
coefficients	equations			
* Solution of ordinary differential equations with variable	* Solution of partial differential equations subject to			
coefficients	boundary conditions			
	* Integral equations of convolution type			
Fourier Tra	Fourier Transforms			
* Dirichlet's conditions	* Relation between the Fourier Transforms of the			
* Fourier Integral formula	derivatives of a function			
* Fourier Sine and Cosine Transforms	* Applications of Fourier Transform to boundary			
* Linearity property of Fourier Transforms	value problems			
Finite Fourier	Transform			
* Fourier Series	* Relation between the Finite Fourier Transforms of			
* The Finite Fourier sine Transform	the derivatives of a function			
* The Finite Fourier cosine Transform	* Applications of Finite Fourier Transform to			
	boundary value problems			

6. Assessment:

Assessment	Grade Proportion	Week/Dates
First exam	30 %	الأربعاء 2019/11/13
Second exam	30 %	الأربعاء 2019/12/18
Final exam	40 %	End of Semester
Total	100 %	

7. Text Book:

The main reference	1) Integral Equations and Boundary value problems
	2) Integral Transforms
Author(s)	1,2) M. D. Raisinghania
Publisher	1,2) S. Chand & Company Ltd.
Year	1)2000
	2)1995
The edition	1,2) 2 nd edition

8. References and additional resources:

2) Lokenath Debnath & Dambaru Bhatta, Integral transforms and their applicatio	ns
3) Mary Boas, Mathematical Methods in the Physical Sciences	