جامعة آل البيت

دائرة ضمان الجودة التخطيط

College of Science Department of Mathematics Course syllabus: Stochastic process First semester 2020/2021

1. Instructor Information:

Instructor Name	Ahmad M. H. Al-khazaleh
Office Hours	
Office Number and	2153
Telephone Extension	
Email	ahmed_2005kh@yahoo.com

2. Course Description:

Markov chains, transition probability, classification of states, branching and queueing chains, stationary distributions of Markov chain, Poisson processes, continuous-time Markov processes.

3. Course Information

Course Code: 401434	Course Title: Stochastic process	Level: Forth year
Delivery Mode: Lecture	Pre-requisite: 401331	Day(s) and Time:
Academic year: 2020-2021	Semester:	Credit Hours: 3

4. Course Objectives:

1. Calculate conditional probability, conditional expectation, and conditional variance

2. Define Markov chains in discrete and continuous time.

3. Describe continuous time Markov chains and birth and death processes

5. Intended Student Learning Outcomes

1. Make use of the knowledge of mathematical techniques conditional probability.

2. Students should be able to apply conditional expectation, and conditional variance.

3. Students should be able to know the concepts Markov chains in discrete and continuous time.

4. Students should be able to know Chapman-Kolmogorov equations. Classify Markov chains in discrete and continuous time as recurrent and transient states, periodicity and irreducibility. Calculate transition probabilities. Compute limiting probabilities for Markov chains. Calculate absorption probabilities and the expected time to absorption for Markov chains.

1

6. Course Content:

Week	Chapter	Subject	Pages and Assignments
1 – 3	Chapter 1 Introduction	 Stochastic Modeling Probability Review The Major Discrete Distributions Important Continuous Distributions Some Elementary Exercises Useful Functions, Integrals, and Sums 	
4-7	<u>Chapter 2</u> Conditional Probability and Conditional Expectation	 The Discrete Case The Dice Game Craps Random Sums Conditioning on a Continuous Random Variable 	
8 - 11	<u>Chapter 3</u> Markov Chains: Introduction	 Definitions Transition Probability Matrices of a Markov Chain Some Markov Chain Models First Step Analysis Some Special Markov Chains Functional of Random Walks and Success Runs Branching Processes 	
12-14	<u>Chapter 4</u> The Long Run Behavior of Markov Chains	 Regular Transition Probability Matrices Examples The Classification of States The Basic Limit Theorem of Markov Chains Reducible Markov Chains 	

7. Assessment:

Assessment	Grade Proportion	Week/Dates
Class Work (Quizzes, Homework and Attendance of the lecture)		
First exam	25 %	7 th Week
Second exam	25 %	12 th Week
Final exam	50 %	End of Semester
Total	100 %	

8. Text Book:

ICAT DOOK.	
The main reference	Introduction to Probability Models
Author(s)	Sheldon M. Ross
Publisher	Elsevier
Year	2014
The edition	11th edition
The reference website	

9. References and additional resources:

1)	An Introduction To Stochastic Modeling, Howard M. Taylor and Samuel Karlin
1)	Third Edition 1998 Academic Press