# Al al-Bayt University

جامعة آل البيت دائرة ضمان الجودة والتخطيط



# College of Sciences Department of Mathematics Course Syllabus: Numerical analysis (2) First semester 2020-2021

### 1. Instructor Information

| Instructor Name | Safwan Al-Shara'           |
|-----------------|----------------------------|
| Email:          | drsafwanshara973@gmail.com |

### 2. Course Description

Numerical solution of first derivative using 2,3,5-points forwards and backwards methods. Numerical solution of definite integrals using Quadruture formulas, Romberg method and Gaussian method. Runge-Kutta methods, Taylor method and multi-step methods. Numerical solutions of higher-Order equations and systems of differential equations. Stability. Approximating Eigenvalues.

#### 3. Course Information

| <b>Course Code</b> 401421    | <b>Course Title</b> Numerical analysis (2) | Level fourth year                                |
|------------------------------|--------------------------------------------|--------------------------------------------------|
| Delivery Mode Lecture online | Pre-requisite 401321                       | Day(s) and Time<br>Monday, Wednesday: 12:30-2:00 |
| Academic year 2020-2021      | Semester First semester                    | Credit Hours 3                                   |

#### 4. Course Objectives

1. Approximate a first derivative of function using forward and backward methods.

2. Approximate definite integrals using Quadruture formulas (Trapezoidal, Simpsion's and Mid-point rules), Romberg method and Gaussian method.

3. Finding the numerical Solutions of initial value problems of first order using Euler's method, Higher-Order Taylor methods, Runge-Kutta methods and Multistep methods.

4. Finding the numerical Solutions of higher-Order equations and systems of differential equations.

5. Understanding the stability of Multistep methods.

6. Approximating the eigenvalues of the matrices.

## 5. Intended Student Learning Outcomes

Successful completion of the course should lead to the following outcomes:

#### 1) Knowledge:

\* Understand the Taylor theorem.

\* Finding approximate value for first derivative of function and its bound error.

- \* Finding approximate value for definite integrals and its bound error.
- \* Finding the numerical Solutions of initial value problems of first order and its bound error.
- \* Finding the numerical Solutions of higher-Order equations and systems of differential equations.
- \* Demonstrate knowledge and understanding the strongly and weakly stable of the multistep methods.
- \* Approximating the eigenvalues of the matrices.

#### 2) Cognitive Skills

\*Use the numerical techniques to evaluate some mathematical problems.

\*Use mathematics to analyze data and translate data into visual representations.

#### 3) General Competences

- \* Develop cooperative work habits and communication skills.
- \* Develop and practice disciplined habits of successful learning such as
- \* Attending class regularly, making sure to arrive on time, and ready to focus and staying to the end of each class
- \* Preparing for each class by prior textbook reading, practice with problems, and making a list of questions, etc.
- \* Taking responsibility for one's own learning—staying up to date in everything that concerns the course.
- \* Encourage the development of Estimation skills and Logical thinking.

#### 6. Course Content Teaching Week **Topics/Activities to be Covered** Numerical Differentiation 1 Richardson's Extrapolation , Elements of Numerical Integration 2 3 Composite Numerical Integration 4 **Romberg Integration** Adaptive Quadrature Methods , Gaussian Quadrature 5 6 Improper Integrations The Elementary Theory of Initial-Value Problems 7 Euler's Mathod , Higher-Order Taylor Methods 8 9 Runge-Kutta Methods 10 Mid-term exam Multistep Methods , Higher-Order Equations and Systems Of DEs 11 12 Stability Linear Algebra and Eigenvalues 13 The Power Method 14 15 Review 16 Final Exam

#### 7. Teaching and learning Strategies and Evaluation Methods

| Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                           | Teaching Strategies                                                          | learning<br>Strategies       | Evaluation<br>Methods                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------|
| <ul> <li>-Approximate a first derivative of function using<br/>forward and backward methods.</li> <li>-Approximate definite integrals using Quadruture<br/>formulas (Trapezoidal, Simpsion's and Mid-point<br/>rules), Romberg method and Gaussian method.</li> <li>-Finding the numerical Solutions of initial value<br/>problems of first order and its bound error.</li> <li>-Finding the numerical Solutions of bioher-Order</li> </ul> | - Pdf files and video record<br>- Ask students questions and<br>discuss them | Give homework<br>assignments | - Classroom<br>presentations<br>- Discussion<br>- Classroom<br>presentations<br>- Discussion |
| equations and systems of differential equations.                                                                                                                                                                                                                                                                                                                                                                                            | - Solve various issues                                                       |                              | - Mid-term exam                                                                              |
| -Demonstrate knowledge and understanding the                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              |                              | - Classroom                                                                                  |
| strongly and weakly stable of the multistep methods                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              |                              | presentations                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                              | - Final exam                                                                                 |

#### 8. Assessment

| Assessment                                                   | Grade Proportion | Week/Dates      |
|--------------------------------------------------------------|------------------|-----------------|
| Class Work (Quizzes, Homework and Attendance of the lecture) | 10 %             |                 |
| Mid-term exam                                                | 40 %             | 10th Week       |
| Final exam                                                   | 50%              | End of Semester |
| Total                                                        | 100%             |                 |

### 9. Text Book

| The main reference    | Numerical Analysis                                   |
|-----------------------|------------------------------------------------------|
| Authors               | Richard L. Burden & J. Douglas Faires                |
| Publisher             | Gary Ostedt                                          |
| Year                  | 2001                                                 |
| The edition           | 9th. edition                                         |
| The reference website | https://epdf.pub/numerical-analysis-9th-edition.html |

#### 10. References and additional resources

| 1 | Laurene V. Fausell , Applied Numerical Analysis using Mat Lab.                   |
|---|----------------------------------------------------------------------------------|
| 2 | David Kincaid & Ward Cheney, Numerical Analysis.                                 |
| 3 | Cuntis F. Gerald & Patrick O. Wheatley, Applied Numerical Analysis, 7th edition. |