جامعة آل البيت دائرة ضمان الجودة والتخطيط

College of Science Department of Mathematics Course syllabus: Ordinary Differential Equations 2 First semester 2019/2020

1. Instructor Information:

Instructor Name	Safwan Al-Shara'	
Office Hours	Tuesday Monday, Wednesday	10:00 - 11:00 12:00 - 1:00 12:30 - 2:00
Office Number and Telephone Extension	2201	
Email	safwan_alshara973@yaho	o.com

2. Course Description:

Existence and uniqueness theory. Theory of systems of linear differential equations. Phase plane for autonomous linear systems and their critical points. Stability of solutions of linear and nonlinear systems.

3. Course Information:

Course number: 401403	Course Title: Ordinary Differential Equations 2	Level : Fourth year
Course Nature: Theoretical	Prerequisite: Real analysis 1 (401301) + Ordinary differential equations 1 (401203)	Lecture time: -
Academic year: 2019 – 2020	Semester: First	Credit Hours: 3

4. Course Objectives:

This course sheds light on the existence and uniqueness theorems of ODE's , use Frobenius method to find series solutions for some types of second order ODEs about regular singular points, Find series solutions for the Bessel differential equation, find the solutions for some types of linear systems with constant coefficients and the stability of some nonlinear DE's.

5. Intended Student Learning Outcomes:

-Students should be able to solve some types of linear ODE's. -Students should be able to write a mathematical proof of the existence and uniqueness theorem. -Students

-students should be able to write a mathematical proof of the existence and uniqueness theorem. -students should be able to find a series solution for some 2nd order ODE's about regular points using Frobenius method. -Students should be able to find the solutions for some types of linear systems with constant coefficients. -Students should be able to study the stability of the solution for some nonlinear ODE's.

6. Course Content:

Course Content	Pages	Assignments
Chapter 2 : First Order Differential Equations:	105-115	All Odd
 2.8 The Existence and Uniqueness theorem Chapter 5 : Series Solutions of Second Order Linear Equations 		Problems
✤ 5.1 Review of Power Series		
 5.2 Series Solutions near an Ordinary Point, Part I 		
 5.3 Series Solutions near an Ordinary Point, Part II 		All Odd
 5.4 Regular Singular Points 	231-291	Problems
 5.5 Euler Equations 		Problems
 5.6 Series Solutions near a Regular Singular Point, Part I 		
 5.7 Series Solutions near a Regular Singular Point, Part II 		
✤ 5.8 Bessel's Equation		
1		

Chapter 7 : Systems Of First Order Linear Equations:		
 7.4 Basic Theory Of Systems of First Order Linear Equations 		
 7.5 Homogeneous Linear Systems with Constant Coefficients 		All Odd
 7.6 Complex Eigenvalues 	368-418	Problems
 7.7 Fundamental Matrices 		Prodiems
 7.8 Repeated Eigenvalues 		
 7.9 Nonhomogeneous Linear Systems 		
Chapter 9 : Nonlinear Differential Equations and Stability:		
 9.1 The Phase Plane: Linear Systems 	459-491	All Odd
 9.2 Autonomous Systems and Stability 	409-491	Problems
 9.3 Almost Linear Systems 		
7 Teaching and learning Strategies and Evaluation Math	aada	

7. Teaching and learning Strategies and Evaluation Methods

Learning Outcomes	Teaching	learning	Evaluation
Learning Outcomes	Strategies	Strategies	Methods
 Solve some types of linear (ODEs). Write a mathematical proof of the existence and uniqueness theorem. Use Frobenius method to find series solutions for some types of second order ODEs about regular singular points for the three cases (whenever the different between the two exponents is not an integer, zero, or an integer). 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	- Classroom presentations - Discussion - First exam
-Find series solutions for the Bessel differential equations, and determine the properties of the Bessel functions.	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	- Classroom presentations
 -Find the solutions for some types of linear systems with constant coefficients. - Study the stability of the solution for some nonlinear ODE's. 	 Writing on the blackboard Ask students questions and discuss them Solve various issues 	Give homework assignments	- Discussion - Second exam

8. Assessment:

Assessment	Grade Proportion	Week/Dates
Class Work (Quizzes, Homework and Attendance of the lecture)	6 %	
First exam	22 %	
Second exam	22 %	
Final exam	50 %	End of Semester
Total	100 %	

9. Text Book:

The main reference	Elementary Differential Equations and Boundary Value	
	Problems	
Author(s)	William E. Boyce & Richad C. DiPrima	
Publisher	JOHN WILEY & SONS, INC.	
Year	2000	
The edition	7 th edition	
The reference website	www.wiley.com/college/Boyce	

10. References and additional resources:

1)	Edwards C. H., Elementary Differential Equations with Boundary Value Problems.
2)	Cambell S. L., Introduction to Differential Equations with Boundary Value Problems
3)	Kreszing E., Advanced Engineering Mathematics