Department of physics Faculty of Science Al alBayt university

Course description of: Quantum M. II (402468) Instructor: Dr. M Alshudi-

fat

1 Instructor's Information

Instructor's / Coordinator's Name:	Dr. Mohammad Faleh Alshudifat	
Office Hours:	TBA	
Office and Phone:	ibn Hazm al tahery, 2nd Floor. 📞 2108	
Email:	mohmd7shudif@aabu.edu.jo	
Research and Teaching Assistant /		
Supervisor / Technical (if any):	NA	

2 Course Description

This course is the second part of quantum mechanics for seniors (4th year level). The main topics to be covered are: Schrodinger mechanics in three Cartesian coordinates and in spherical coordinates, the quantum solution for the hydrogen atom system, the angular momentum (orbital, spin 1/2 and total angular momentum), perturbation theory for non-degenerate and degenerate quantum systems, and brief introduction to variational principle and WKB approximation methods.

3 Courtse Information

Course No.:402468)	Course Title: Quantum Mechanics II
Level: Bachelor 4 th Yr.	Course Type: Theoretical
Prerequisite: Quantum Mechanics I	Class Time: 10:00-11:00.
Class days: Sun. Tu. Th.	Academic Year:2019-2020
Semester: Fall	Study hours:

4 Course Objectives CO

CO1.	Acquire the knowledge of quantum mechanics in Cartesian three-
	dimensions and apply it to infinite potential well.
CO2.	Acquire the knowledge of quantum mechanics in spherical coordinates
CO3.	Apply quantum mechanics in spherical coordinates to hydrogen atome
CO4.	Acquire the knowledge of quantum mechanics in angular momentum and
	spin.
CO5.	Apply perturbation theory to perturbed quantum systems and hydrogen
	atom
CO6.	Acquire Variational principle and WKB approximation methods in quan-
	tum mechanics

5 Learning Outcomes (LO)

(Knowledge, Skills, and Competencies)(K,S,C) $\,$

Upon successful completion of the course, the students will be able to:

LO1.	Apply quantum operators and Schrodinger equation in Cartesian 3-D to
	Solve infinite potential well problem in 2 and 3-dimensions and defined
	the energy degeneracy.
LO2.	Write Schrodinger equation in spherical coordinates and solve for the
	angular part and write the radial part.
LO3.	Apply Schrodinger equation in spherical coordinates to the hydrogen
	atom and solve for energy states, degenerate states and its associated
	wavefunctions
LO4.	Define the operators associated with the orbital and spin angular mo-
	mentum with their eignstates and eigenvalues.
LO5.	Apply perturbation theory to solve for fine structure and hyperfine split-
	ting in the hydrogen atom.
LO6.	Recognize when Variational principle and WKB approximation methods
	used.

6 Course Content

Week	Topic	Comments	LO
1	Quantum mechanics I re-		
	view		
2	Ch.4 Introduction to 3-D		LO1
	Schrodinger equation		
3	2-D & 3-D infinite potential well		LO2
4-5	Hydrogen atom solution	Use spherical coordinates	LO3+LO4
6	Angular Momentum	Orbital angular momentum	LO5 LO5
0	First exam	Orbital angular momentum	LOS
7			TOF
7	Spin		LO5
8	spin 1/2 particle in magnetic		LO5
	field		
9	Ch.6 Addition of angular		LO5
	momentum.		
10	Non-degenerate perturba-		LO6
	tion Theory.		
11	Degenerate perturbation		LO6
	Theory.		
	Second Exam		
12	Fine structure and hyperfine		LO6
	splitting of Hydrogen atom.		
13	Ch.7 Variational principle	Brief introduction	LO7
	and the Helium ground		
	state. WKB approximation		
14	Ch.7 WKB approximation	Brief introduction	LO7
	Final Exam		

7 Teaching and Learning Strategies and Evaluation Methods

No.	LO	Teaching Strate-	Learning Activi-	Evaluation	
		gies	ties	/Measurement	
				Method (Exam/	
				presentations/	
				discussion/ as-	
				signments)	
1	LO1-LO6	trad. lect.	Discussion & Prob-	HW & Mid-exam	
			lem Solving	& Final Exam	

8 Assessment

Methods Used	Assessment Time	Distribution of grades
Semester work (report,	During semester	0%
assignments, attendance)		
First Exam	Seventh week	25%
Second Exam	Twelfth week	25%
Final Exam	Week of the final exams	50%

9 Textbook

Main Reference	Introduction to quantum mechanics.
Author	David J. Griffiths.
Publisher	Pearson Education Inc.
Year	2005.
Edition	2 nd edition.
Textbook Website	https://doi.org/10.1017/9781316995433

10 Extra References (books and research published in periodicals or websites)

B. Bransden & C. Joachain, Quantum Mechanics, Publisher: Prentice Hall-Pearson, Harlow, EnglandISBN: ISBN 0582-35691-1, 2nd Edition, 2000.