Al albayt university
Department of physics
Due to $30 / 11 / 2015$

Home work 2
Nuclear physics
Name:

Q1: Start from Schrodinger equation in three-dimension

$$
\left[\frac{-\hbar^{2}}{2 m} \nabla^{2}+V(r)\right] \Psi(\vec{r})=E \Psi(\vec{r})
$$

and use ∇^{2} in spherical coordinate, where

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

and the variable separation

$$
\psi=\frac{u(r)}{r} Y_{\ell m}(\theta, p h i)
$$

to rewrite the Schrodinger equation to be looks like

$$
\frac{d^{2} u_{\ell}}{d r^{2}}+\frac{2 m}{\hbar^{2}}\left[E-V(r)-\frac{\ell(\ell+1)}{2 m r^{2}}\right] u_{\ell}(r)=0
$$

where $\ell(\ell+1)$ is the solution value of $Y_{\ell m}(\theta, p h i)$
Q2: Determine the nucleus in $A=135$ isobars that have the lowest mass (largest binding energy) using the mass parabola. (Hint) differentiate the mass equation $\left(Z m_{Z}+N m_{N}-B E\right)$ with respect to Z with constant A and determine the extreme value of Z then recycle it to a closest integer, then determine the nucleus. (Answer $Z=56$).

