Faculty of Science Physics Department

Course Outline of Mathematical Physics I

1. Instructor's Information

Instructor's / Coordinator's Name:	Prof. Hatem Widyan
Office Hours:	10-11, 12-1: Sunday, Tuesday, Thursday
Office and Phone:	Bukhari 2 nd Floor (2172)
Email:	widyan@aabu.edu.jo
Research and Teaching Assistant /	NA
Supervisor / Technical (if any):	

2. Course Information

Course No.: 402281	Course Title: Mathematical Physics	Level: 2 rd yr
	1	
Course Type: Theoretical	Prerequisite: Calculus II	Class Time: 9:00-10:00
Academic Year:2019-2020	Semester: Fall	Study hours:

3. Course Description

This is an Introductory course in mathematical physics for students who already took successfully Calculus II and General Physics II. We begin by reviewing the concept of the vector. After that introduce gradient, divergence, and curl and give their physical meaning and their applications in physics. We discuss Gauss and Stokes Theorems. Transformations between the three coordinates (Cartesian, spherical, cylindrical) are discussed. Separation of variables. The concept of complex numbers is introduced. How to add, subtract, multiply, divide complex numbers is discussed. Determinants and matrices are defined and their applications is discussed. Solving first and second order ordinary differential equations is introduced, Finally, we discuss Fourier series and learn how to expand periodic functions.

4. Course Objectives:

a-	Review the vectors. Discuss the calculus of vectors. Define gradient,
	divergence and curl of vector and other related concepts.
b-	Introduce different coordinate systems and the relation between them.
C-	Discuss complex numbers. Finding their roots and how to add, multiply and
	divide them.
d-	Introduce determinants and matrices and their applications to physical
	problems.
e-	Learn how to solve first and second order ordinary differential equations.
f-	Use Fourier series to expand and periodic function in terms of sine and
	cosine.
5. (Course Learning Outcomes (CLO)

5. Course Learning Outcomes (CLO)

(Knowledge, Skills, and Competencies) (K,S,C)

Upon successful completion of the course, the students will be able to:

CLO 1: Define various quantities related to the course. (K)

CLO 2: Recognize the basic characteristics and properties of vectors. (K)

CLO 3: Solve problems using Gauss and Stokes Theorems. (S)

CLO 4: Evaluate physical quantities using the suitable coordinate system. (S,C)

CLO 5: Define complex numbers and apply them in physics. (S,C)

CLO 6: Apply determinants and matrices to solve set of linear physical equations. (S)

CLO 7: Solve the first and second order ordinary differential equations. (S,C)

CLO 8: Expand periodic functions in terms of sine and cosine using Fourier series.(S)

6. Course Content

Week	Торіс	Comments	Course Outcome
1	CHAPTER : OVERTURE	We review the concept of vectors	CLO1+CLO2
2-6	 Chapter 1: Vector Analysis Vector differentiation and integration Gradient, divergence, curl Gauss's and Stokes' theorems Potential theory 	To define the vector in using rotation of axis. We learn how multiply three vectors. We define vector operators and use them to solve physical problems. Potential theory is formulated and learn how to calculate them	CLO1+CLO2 +CLO3

7-9	Chapter 2: Curvilinear Coordinates	To evaluate a physical quantity involves	
	-	either integration or solving differential	
	Review of Cartesian coordinates	equations. We discuss different	
	Spherical coordinates	coordinates depending on the symmetry	
	 Cylindrical coordinates 	of the problems to ease calculating	
	Transformation between	physical quantities.	CLO1+CLO4
	coordinates	physical quantities.	
	 Separation of variables 	Separation of variables is used solve	
	> Separation of variables	some types of partial differential	
		equations.	
	~FIRST EXAM ON OCTO	DBER 31 2019 (Thursday) 25%	
10-11	Chapter 3: Complex Numbers	In this chapter, we discuss complex	
		numbers and how to represent them in	
	 Graphical representation of 	polar form. We learn how to add,	
	complex conjugate	subtract, multiply and divide complex	CLO1+CLO5
	 Algebraic operations 	numbers, as well as finding their roots.	
	De Moivre's formula	Functions of complex numbers are also	
	Powers and roots of complex	introduced and discussed.	
	numbers		
	Functions of complex variables		
	SECOND EXAM ON D	ECEMBER 01 2019 (SUNDAY) 25%	
12	Chapter 4: Determinants	Determinants are defined and we learn	CLO1+CLO6
	> Definitions and properties	how to use them in solving a set of linear	
	 Definitions and properties Longo double properties 	algebraic equations.	
	Laplace's development by		
	minors		
	Set of a set of homogeneous and		
	nonhomogenous equations		
13	Chapter 5: Matrices	Matrices have a wide applications in	CLO1+CLO6
	Dania definitions	physics. So, we learn how to use them is	
	 Basic definitions 	solving some problems.	
	Laws and properties of series		
	 Special matrices 		
	Trace		
	Eigenvalues and eigenvectors		
	Diagonalization		
14	Chapter 6: Ordinary Differential	Many physical laws are written as a differential equation. So, it is a must for	CLO1+CLO7
	Equations	students to learn how to solve them. We	
	Special first order differential		
	^	discuss first as well as second order	
	equations	ordinary differential equations.	
	 Second order linear differential 		
	equations		
	Method of variation of		
	parameters		
	Other second order differential		

15	 Chapter 7: Fourier Series Introduction and useful integrals Calculus of Fourier coefficients Complex form 	We discuss how to expand periodic functions of any period in terms of sine and cosine. We introduce different forms of Fourier series.	CLO1+CLO8
16	Review	Review	Final Exam

7. Teaching and Learning Strategies and Evaluation Methods

No.	Learning Outcomes	Teaching Strategies	Learning Activities	Evaluation /Measurement Method
				(Exam/ presentations/ discussion/
				assignments)
1	(CLO1)	trad. lect.	Discussion & Problem Solving	HW & First Exam & Final Exam
2	(CLO2)	trad. lect.	Discussion & Problem Solving	HW & First Exam & Final Exam
3	(CLO3)	trad. lect.	Discussion & Problem Solving	HW & Second Exam & Final Exam
4	(CLO4)	trad. lect.	Discussion & Problem Solving	HW & Second Exam & Final Exam
5	(CLO5)	trad. lect.	Discussion & Problem Solving	HW & Final Exam
6	(CLO6)	trad. lect.	Discussion & Problem Solving	HW & Final Exam

8. Assessment

Methods Used	Assessment Time	Distribution of grades
1- Semester work (report,	During semester	00%
assignments, attendance)		
3- First Exam	Sixth week	25%
3- Second Exam	Tenth	25%
4- Final Exam	Week of the final exams	50%

9. Textbook

Main Reference	Introduction to Mathematical Physics
Author	N.M. Laham and N.Y. Ayoub
Publisher	-
Year	2004
Edition	2 nd (or any Edition)
Textbook Website	-

10. Extra References (books and research published in periodicals or websites)

1-	Mathematical Methods in the Physical Sciences, Mary L. Boas, Third
	Edition, John Wiley & Sons, 2006.
2-	Mathematical Methods for Physicists, George Arfken and Hans J. Weber,

2- Mathematical Methods for Physicists, George Arfken and Hans J. Fifth Edition, Academic Press, 2000.