جامعة آل البيت
دائرة ضمان الجودة والتخطيط

College of Science Department of Mathematics Course syllabus: Advanced Ordinary Differential Equations Second semester 2019/2020

1. Instructor Information:

Instructor Name	Safwan Al-Shara'	
Office Hours	Monday, Wednesday	9:30 - 11:00
	Thursday	1:00 - 2:00
Office Number and Telephone Extension	2201	
Email	safwan_alshara973@y	ahoo.com

2. Course Description:

Preliminaries and examples for initial value problems, Existence and uniqueness theorems, Boundary value problems and Sturm-Liouville theory, Green's functions, Phase plane, Autonomous systems and Stability, Alost linear systems, Liapunov's second method, periodic solutions, Applications.

3. Course Information:

Course Code: 401703	Course Title: Advanced Ordinary Differential	Level: Master degree
Delivery Mode: Lecture	Pre-requisite: None	Day(s) and Time: Thursday 2:00-5:00
Academic year: 2019-2020	Semester: Second semester	Credit Hours: 3

4. Course Objectives:

This course provides a continuation of the theory and solution of ordinary differential equations (ODEs). The emphasis is on developing the mathematical properties and solution methods that characterize ordinary differential equations, including a more detailed examination of eigenvalues and eigenvectors, stability, the phase plane. In addition,

1. Working with systems of ordinary differential equations and non-linear ordinary differential equations is also stressed.

2. Developing and understanding and appreciation of the qualitative behavior of the solution vis-a-vis orbits and phase plane portraits;

3. Being able to formulate and find solutions to more complex mathematical problems encountered in the applied sciences and engineering involving differential equations.

The emphasis is on improved critical thinking skills with regard to using extending the methods learned in Ordinary differential equations I & II to solve more difficult problems involving differential equations. Theory and analysis is stressed throughout

4. Study Existence and Uniqueness theorems, BVP's and SLP's , Green's function with applications, Stability and Liapunov's second method.

5. Intended Student Learning Outcomes :

After successfully completing this course the expectation is that students will be able to:

1. Examine the theory of existence and uniqueness of the solution of linear and nonlinear ODE's .

 Apply Picard's method of successive approximations to the proof of the existence and uniqueness theorem.

- 3. Identify classes of non-linear ordinary differential equations.
- 4. Apply Green's function approach to solve some BVP's.
- 5. study the Stability of some nonlinear DE's and apply Liapunov's method.

6. Course Content:

The Existence and Uniqueness Theorems

- Initial value problems (IVP's)
- Picard method of successive approximations
- Boundary Value problems (BVP's)

Calculus of Variation

- Some famous problems
- Basic Lemmas, Euler Lagrange equation (E-L eq.), special cases
- Applications

1

Boundary Value Problems and Sturm-Liouville Theory

- Basic definitions
- Sturm Liouville Boundary Value Problems (SLP's)
- Lagrange Identity
 Nonhomogeneous
- Nonhomogeneous Boundary Value Problems
- ✤ Adjoint BVP
- Fredholm Alternatives
- Green's function approach
 Modified Green's function
- Nonlinear Differential Equations and Stability
 - The Phase Plane: Linear Systems
 - Autonomous Systems and Stability
 - ✤ Almost Linear Systems
 - Liapunove's second method

7. Assessment:

Assessment	Grade Proportion	Week/Dates
Class Work (Quizzes, Homework and Attendance of the lecture)		
First exam	30 %	Thursday 12/3/2020
Second exam	30 %	Thursday 16/4/2020
Final exam	40 %	End of Semester
Total	100 %	

8. Text Book:

TCAL DOOK.		
The main reference	Elementary Differential Equations and Boundary Value Problems	
Author(s)	Boyce W., DiPrima R.	
Publisher	JOHN WILEY & SONS, INC.	
Year	2012	
The edition	10 th edition	
The reference website	https://www.academia.edu/35728568/Elementary Differential Equations_	
	and Boundary Value Problems 10th .pdf?auto=download	

9. References and additional resources:

1)	Michael D. Greenberg, Advanced Engineering Mathematics , Pearson, 2 nd edition, 1998.
יי	https://www.engineeringbookspdf.com/download/?file=7157
	Michael D. Greenberg, Foundation Of Applied Mathematics , Dover Publications, 2 nd edition,
2)	2013.
	https://www.perlego.com/book/113158/foundations-of-applied-mathematics-pdf
3)	Lynn H. Loomis and Shlomo Sternberg, ADVANCED CALCULUS, REVISED EDITION, Jones
	And Bartlett Publishers.
	https://archive.org/details/LoomisL.H.SternbergS.AdvancedCalculusRevisedEditionJonesAndBartle
	tt/page/n553/mode/2up